C

W GLTVE Y
ao S



topics

* Review

* Inheritance

* Create a derived class from a base class
e Call base class constructor/method

* Hiding method

e virtual method

* override method

e polymorphism



review

e Class

* filed

* method

 public and private
* static

* Object — Instance
* constructor



* You can use inheritance as a tool to avoid repetition when defining

different classes that have a number of features in common and are
quite clearly related to one another

* For example,
* managers, manual workers, and all employees of a factory.
* have different responsibilities and perform different tasks

* Inheritance in programming is all about classification
* it’s a relationship between classes



Mammal st
S S e

Horse ..l

¢ 8, Al
Whale Xy

o L al

oS L

inherit from Mammal
* Horse, Whale, Aardvark, Human



Syntax - Using inheritance

class BaseClass

{

}

class DerivedClass : BaseClass

{

}

class DerivedSubClass : DerivedClass

{

}



class Mammal class Horse : Mammal

{
public void Breathe() {
{ ;ublic void Trot() Horse myHorse = new Horse();
{..} myHorse.Trot();
} } myHorse.Breathe();
public void SuckleYoung() 1 <c Whale : Mammal

myHorse.SuckleYoung();

{ (

public void Swim()

} )



* In CH, a class is allowed to derive from, at most, one base class; a class
is not allowed to derive from two or more classes

 All structures actually inherit from an abstract class named
System.ValueType.
e cannot define your own inheritance hierarchy with structures,

* and you cannot define a structure that derives from a class or another
structure.



System.Object

* All classes implicitly derive from System.Object.

* all classes that you define automatically inherit all the features of the
System.Object class

* E.g., ToString

* the C# compiler silently rewrites the Mammal class as the following
code

class Mammal : System.Object

{
}...



Calling base-class constructors

* A derived class automatically contains all the fields from the base
class (In addition to the methods that it inherits)

* a constructor in a derived class
* call the constructor for its base class as part of the initialization,

class Mammal // base class class Horse : Mammal // derived class
{ {
public Mammal(string name) //constructor for base class public Horse(string name)
{ : base(name) // calls Mammal(name)

}



Calling base-class constructors (2)

* |f you don’t explicitly call a base-class constructor in a derived-class

constructor
* the compiler attempts to silently insert a call to the base class’s default constructor

* Example:
Class Horse : Mammal class Horse : Mammal
{ {
public Horse (string name) m—) ,blic Horse(string name)
{ : base()
{
}
} 1

This works if Mammal has a public default constructor!



Assigning classes

Horse myHorse = new Horse(...);
Whale myWhale = myHorse; // error - different types

Horse myHorse = new Horse(...);
Mammal myMammal = myHorse; // legal, Mammal is the base class of HOrse

* higher up the inheritance hierarchy
* all Horses are Mammals
 think of a Horse simply as a special type of Mammal



Assigning classes(2)

e Mammal myMammal = new Mammal(...);
e Horse myHorse = myMammal; // error

* Note
* not all Mammal objects are Horses

* You can assign a Mammal object to a Horse variable as long as you
first check that the Mammal is really a Horse, by using the as or is
operator or by using a cast



Casting data safely

* By using a cast, you can specify that, in your opinion, the data
referenced by an object has a specific type and that it is safe to
reference the object by using that type

* The C# compiler will not check that this is the case, but the runtime
will

* If the type of object in memory does not match the cast, the runtime
will throw an InvalidCastException,

* C# provides very useful operators that can help you perform casting
in @ much more elegant manner: the is and as operators



The is operator

* You can use the is operator to verify that the type of an object is what
you expect it to be

WrappedInt wi = new WrappedInt();

object o = wi;
if (o is WrappedInt)

{
Wrappedint temp = (WrappedInt)o; // This is safe; o is a WrappedInt

}



The as operator

* The as operator fulfills a similar role to is but in a slightly truncated manner

* The runtime attempts to cast the object to the specified type. If the cast is
successful, the result is returned. If the cast is unsuccessful, the as operator
evaluates to the null

Wrappedint wi = new WrappedIint();

object o = wi;

WrappedInt temp = 0 as Wrappedint;
if (temp != null)

{

... |/ Cast was successful

}



* the as operator

* to check that myMammal refers to a Horse, and if it does, the assignment to myHorseAgain
results in myHorseAgain referring to the same Horse object.

* If myMammal refers to some other type of Mammal, the as operator returns null instead.

Horse myHorse = new Horse(...);
Mammal myMammal = myHorse; // myMammal refers to a Horse

Horse myHorseAgain = myMammal as Horse; // OK - myMammal was a Horse

Whale myWhale = new Whale(...);
myMammal = myWhale;

myHorseAgain = myMammal as Horse; // returns null - myMammal was a Whale



* Any additional methods defined by the Horse or Whale class are not
visible through the Mammal class.

* Horse myHorse = new Horse(...);

e Mammal myMammal = myHorse;

* myMammal.Breathe(); // OK - Breathe is part of the Mammal
 classmyMammal.Trot(); // error - Trot is not part of the Mammal class



Declaring new methods

* If a base class and a derived class happen to declare two methods
that have the same signature, you will receive a warning when you
compile the application

A method in a derived class masks (or hides) a method in a base class that
has the same signature

* The method signature refers to the name of the method and the
number and types of its parameters, but not its return type



example

class Mammal

{

public void Talk() // assume that all mammals can talk

{.}

class Horse : Mammal

{

public void Talk() // horses talk in a different way from other mammals!

{.}
}

the compiler generates a warning message informing you that Horse.Talk hides the
inherited method Mammal.Talk



sure that the two methods to have the same signature,
silence the warning by using the new keyword

class Mammal

{
public void Talk()
{.}

}

class Horse : Mammal

{
new public void Talk()

{.}



virtual methods

* A method that is intended to be overridden is called a virtual method

* Overriding a method is a mechanism for providing different implementations

of the same method + the methods are all related because they are intended
to perform the same task

* Hiding a method is a means of replacing one method with another—the
methods are usually unrelated and might perform totally different tasks

e Overriding a method is a useful programming concept
* hiding a method is often an error



* You can mark a method as a virtual method by using the virtual
keyword. For example, the ToString method in the System.Object
class is defined like this:

namespace System

{

class Object

{
public virtual string ToString() {...}

}



override methods

* |If a base class declares that a method is virtual,

* a derived class can use the override keyword to declare another
implementation of that method

class Horse : Mammal

{

public override string ToString()

{..
}



* The new implementation of the method in the derived class can call the
original implementation of the method in the base class by using the base
keyword

class Horse : Mammal

{

public override string ToString()

{
string temp = base.ToString();

}



Polymorphic (many forms) methods

* There are some important rules you must follow when you declare
polymorphic methods
* (by using the virtual and override keywords)

1. Avirtual method cannot be private
 Similarly, override methods cannot be private

2. The signatures of the virtual and override methods must be
identical
* both methods must return the same type



You can only override a virtual method

If the derived class does not declare the method by using the

override keyword, it does not override the base class method; it
hides the method (a compile-time warning)

An override method is implicitly virtual and can itself be overridden
in a further derived class



Virtual methods and polymorphism

» Using virtual methods, you can call different versions of the same
method, based on the object type determined dynamically at run

time
class Mammal // base class class Horse : Mammal class Whale : Mammal
{ { {
public virtual string GetTypeName() public override string GetTypeName() public override string GetTypeName()
{ { {
return "This is a mammal® - return "This is a horse"; return "This is a whale";
) | } }
} }

class Aardvark : Mammal

{
}



the override keyword used by the GetTypeName method in the Horse and Whale
classes,
the Aardvark class does not have a GetTypeName method.

Mammal myMammal;
Horse myHorse = new Horse(...);
Whale myWhale = new Whale(...);

Aardvark myAardvark = new Aardvark(...);

myMammal = myHorse;
Console.WriteLine(myMammal.GetTypeName()); // 2?7
myMammal = myWhale;
Console WriteLine(myMammal.GetTypeName()); // 2?7

myMammal = myAardvark;

Console.WriteLine(myMammal.GetTypeName()); // ??7?



the override keyword used by the GetTypeName method in the Horse and Whale
classes,
that the Aardvark class does not have a GetTypeName method.

Mammal myMammal;

Horse myHorse = new Horse(...);

Whale myWhale = new Whale(...);
Aardvark myAardvark = new Aardvark(...);

myMammal = myHorse;
Console.WriteLine(myMammal.GetTypeName()); // Horse
myMammal = myWhale;
Console.WriteLine(myMammal.GetTypeName()); // Whale
myMammal = myAardvark;
Console.WriteLine(myMammal.GetTypeName()); // Mammal



What if GetTypeName() is not virtual method?



protected access

* it is useful for a base class to allow derived classes to access some of
its members while also hiding these members from classes that are
not part of the inheritance hierarchy

* |If a class A is derived from another class B, it can access the
protected class members of class B. In other words, inside the
derived class A, a protected member of class B is effectively public.

* If a class A is not derived from another class B, it cannot access any
protected members of class B. So, within class A, a protected member
of class B is effectively private



